Text Analytics: what is it really?

With the advent of emergent technologies, businesses are having to hustle to sustain momentum. While it may seem it a little overwhelming to start with, businesses that are reinventing and adopting such technologies, stand to benefit greatly in terms of sharpening their competitive edge by being able to understand their customers and their needs in an unprecedented fashion. 

Text analysis is one such advancement that promises to take businesses to the next level with the assistance of NLP and AI.   

So, what is Text analysis? 

Text analysis is a sub-set of Natural Language Processing (NLP) that aims to automate extraction and classification of actionable insights from amorphous text disguised as emails, tweets, chats, tickets, reviews, and survey responses scattered all over the internet. 

Text analysis or text mining is multi-faceted and anchors NLP to gather and process text and other language data to deliver meaningful insights. 

Why it is needed? 

Maintain Consistency: Manual tasks are repetitive and tiring. Humans tend to make errors while performing such tasks – and, on top of everything else, performing such tasks are time-consuming. Cognitive biasing is another factor that hinders consistency in data analysis. Leveraging advanced algorithms like text analysis enables performing quick and collective analysis rationally and provide reliable and consistent data. 

Scalability: With text analysis, enormous data across social media, emails, chats, websites, and documents can be structured and processed without difficulty. This helps businesses improve efficiency with more information. 

Real-time Analysis:  Real-time data in today’s world is a game-changer. Evaluating this information with text analysis allows businesses to detect and attend urgent matters without delay. Text analysis enables monitoring and automated flagging of tweets, shares, likes, and, spotting expressions and sentiments that convey urgency or negativity. This is greatly advantageous for businesses to act on fact-based information promptly. 

Text Analytics Techniques 

Word / Term Frequency 

This is a nifty text mining technique that captures frequently occurred words across a data set and rates their importance accordingly. To give a context: consider a customer feedback data set on a recently launched product; if the word ‘good’ appears more frequently, this may mean that the product is greatly liked by the customers. 

The biggest challenge with word/term frequency is that different but related terms aren’t checked. Different words may be applied to mean the same thought but this can be reckoned as two different topics and rated accordingly leading to disparities in coming to a conclusion. 

Collocation 

Collocation focuses on identifying commonly co-occurred words. In other words, bigrams and trigrams. Bigrams are two adjacent words, e.g. customer service and Trigrams are three adjacent words, e.g. near the hotel. This can help underpin semantic structures and improve the granularity of insights. 

Sentiment Analysis  

Just as the name suggests, sentiment analysis helps understands the impact of a product/service on the customer’s sentiments. Also, it helps compare the sentiment of the customer towards one product/service against that of a competitor. 

Three are three steps to perform sentiment analysis extensively: 

Polarity Analysis: Measuring the tone of the data i.e. positive or negative 

Categorization: Ranking the data in a specific metric i.e. positive – happy, excited, pleased; negative – sad, angry, confused, frustrated 

Scaling: Scaling the emotions on a measure of 0 to 10 

Although sentiment analysis aims to glean valuable insights by contextualizing data, the biggest challenge with sentiment analysis is to spot sarcasm or irony and software is currently being developed to overcome this challenge.  

Text Classification 

This is the most advantageous NLP (Natural Processing Language) technique as it is language-agnostic and can order, structure, and segment pretty much any data. Text classification helps assign predefined tags or categories to unstructured data.  

Sentiment Analysis, topic modeling, language, and intent detection all come under the text classification umbrella.   

Topic Modeling 

Topic modeling helps categorize documents based on specific topics. This helps process diverse documents and abstract recurring theme and is less individualized.  Topic modeling classifies and gives a percentage or count of words of each document assigned to a specified topic. 

Named Entity Recognition 

Named Entity recognition helps identify nouns with data sets. Consider numbers accompanied by ‘INR’ as being monetary; likewise, “Ms.” or “Mr.” or “Mrs.” followed by one or more capital words is probably a person’s name. 

The major challenge is that, although some nouns define important categories like geographic location, name or monetary values, some lack abbreviations leading to a lot of confusion. 

 Benefits/Use Cases of Text Analysis 

Regardless of the industry, text analysis can be of substantial support for businesses for understanding as well as reaching out to customers comfortably. Check below some of the use cases/benefits of text analysis for businesses. 

#1. Social Media Listening 

Apart from being a medium of staying connected, social media has also become a platform for branding and marketing. Customers talk about their favorite brands and share their experiences all across the social media. Leveraging sentiment analysis of the data available on social media helps in understanding the positive or negative sentiments of users towards products/services and the impact and relations of brands with its customers.  

#2. Sales & Marketing 

Prospecting is a nightmare for a sales team. Sales teams make every effort to improve sales and performance. According to a Monkey learn study, 27 % of sales agents spend more than an hour a day on data entry work instead of selling, signifying critical time is lost in administrative work and not closing deals.  

Text analysis helps in reducing this menial work with automation while providing valuable and specific insights to nurture the marketing funnel.  

To give you an idea: Chatbots are employed to cater to customer queries in real-time. Analyzing this data helps the sales team predict the likelihood of a customer buying a product, perform target marketing and advertising, and make product adjustments. 

#3. Brand Monitoring 

Businesses fight tooth and nail to establish and brand supremacy. Today, professionals are paid to write false or hype reviews across the internet and social media. Also, sometimes customers often write angry reviews in the spur of a moment. Such reviews often spread across the internet like wildfire and do unmitigated harm to the brand image of a company.  

Negative reviews often drive away customers. Studies show, 40% of consumers are put off from buying a product/service if there is a negative review. 

Visual web scrapers and web scraping frameworks in text analyses empower brand monitoring, comprehending one’s brand evolution and in pinpointing aspects affecting one’s brands in real-time, thus, enabling businesses to take necessary action immediately. 

Source: https://www.meaningcloud.com/wp-content/uploads/2017/05/infographic_text_analytics_superheroes.png

#4. Customer Service 

Businesses constantly endeavor to facilitate seamless customer service. Much of the customer churn factors occur due to customer service flaws. With text analysis, you can scrape together customer concerns/queries and feedback to streamline customer service processes. Aside from improving responsiveness this can also help automatically route tickets to reduce manual work and errors. To give an example: the algorithm draws a point ‘My order isn’t delivered yet’ out of customer queries – this will be compared and matched with Delivery Issues tag automatically with the assistance of text analysis. 

Additionally, text analysis will also help in establishing personalized customer services, employ the right person for the job and set priorities efficiently. 

#5. Business Intelligence 

Although businesses are able to glean “what is happening?” with data analysis, they struggle to figure out “why this is happening?”. Text Analysis helps businesses in obtaining context out of the numeric data and reason out why a situation has happened or is happening or what may happen in the future. Case in point, a large number of factors contribute to Sales performance. While data analysis will provide one with numerical statistics, text analysis will help weave why there is a drop or rise in the performance.  

#6. Product Analytics 

Text analysis not just helps in understanding customer needs, but also helps in improving the product. Analyzing customer reviews gives a clear picture of what exactly the customer is looking for vis a vis a product, along with what he/she thinks about the competitor’s product. This enables businesses and brands to build quality products that meet customer requirements. 

#7. Knowledge Management 

We suffer from an overabundance of data today. Processing this behemoth data to draw actionable insights in less time is hardly possible without sophisticated technology advancements. This puts time-sensitive professions like healthcare in dire straits. However, text mining or text analysis can help sort through surplus data in a short time and provide valuable insights for real-time solutions and efficiency.  

#8. Email Filtering 

While this might sound usual, today’s spam and junk mails are so well-bred to induce gullibility in the customers who often become victims of such messages. Text mining can help detect such emails to prevent resulting mis happenings. 

To put it all together 

Text mining or text analysis is useless without NLP and intends to deliver practical, persistent and credible insights with machine learning. The key objective is to arm business with real-time insights that help them drive innovation as well as rack up customer service and profits. 

References:

1. https://www.wonderflow.co/blog/text-analysis

2. https://monkeylearn.com/text-analysis

3. https://www.cmswire.com/cms/customer-experience/text-analytics-what-are-they-why-are-they-important-to-cxm-019073.php

4. https://www.predictiveanalyticstoday.com/top-software-for-text-analysis-text-mining-text-analytics/

  • Share this article
SGA Digital Marketing Team
SGA Digital Marketing Team
About the Author

The SG Analytics Digital Marketing team creates and optimizes content for service and industry-specific blogs. We are a dynamic team focused on building our company's brand online, as well as sharing the expertise of our subject matter experts through the medium of our thought leadership blogs.

Write to Us for More Information or No-obligation Consultation








*By sharing the information you have entered, you give your express consent to SG Analytics to use the provided information to contact you with relevant information related to its offerings and services as and when required. SG Analytics secures all your personal information from unauthorized access, use or disclosure. For more information, please visit our privacy policy.

DOWNLOAD WHITEPAPER



*By sharing the information you have entered, you give your express consent to SG Analytics to use the provided information to contact you with relevant information related to its offerings and services as and when required. SG Analytics secures all your personal information from unauthorized access, use or disclosure. For more information, please visit our privacy policy.

DOWNLOAD Case Study



*By sharing the information you have entered, you give your express consent to SG Analytics to use the provided information to contact you with relevant information related to its offerings and services as and when required. SG Analytics secures all your personal information from unauthorized access, use or disclosure. For more information, please visit our privacy policy.

DOWNLOAD



DOWNLOAD



ISOISO
GDPA